First results of the CALLISTO-experiment: evidence for the formation of a hassate(VIII)

A. von Zweidorf¹, R. Angert¹, <u>W. Brüchle¹</u>, S. Bürger², K. Eberhardt², R. Eichler³, H. Hummrich², E. Jäger¹, R. Jera², H.O. Kling², J.V. Kratz², U. Krille², B. Kuczewski², G. Langrock², G. Lehr², M. Mendel², A. Nähler², A. Peil², V. Pershina¹, U. Rieth², M. Schädel¹, B. Schausten¹, E. Schimpf¹, H.J. Schött¹, E. Stiel¹, P. Thörle², N. Trautmann², K. Tsukada⁴, N. Wiehl², G. Wirth¹

- ¹ GSI, Germany
- ² Institut fuer Kernchemie Universitaet Mainz, Germany
- 3 University of Bern, Switzerland
- ⁴ JAERI, Japan

w.bruechle@gsi.de

Hassium, element 108, was produced in the fusion reaction ²⁶Mg + ²⁴⁸Cm at the UNILAC accelerator of GSI [1]. A rotating target wheel with an average target thickness of 467µg/cm² ²⁴⁸Cm was used, partly together with a ¹⁵²Gd segment. After stopping in a He/O₂- mixture the recoils were oxidized, presumably to HsO4, and were transported to the apparatus CALLISTO (Continuously Working Arrangement for Clusterless Transport of In-situ Produced Volatile Oxides), Fig.1. Nuclear reaction products could react with a NaOH surface under controlled humidity (2g H2O/Kg gas); the nuclear decays of adsorbed species were detected with 16 PIPS-detectors (10x10mm² each), Fig. 2. In the detection array, a stainless steel plate, coated with 1 M ethanolic NaOH (on the average 20 µmol NaOH), is facing 4 detectors at a distance of 1mm. The volatile oxides are allowed to react with the thin alcaline layer, forming non-volatile products which are deposited. The deposition material was replaced every 60 minutes because the deposition efficiency decreases with time [1]. A possible explanation may be, that the alcaline surface is partially neutralized by CO₂, which is an impurity of the used gases and may be formed by a reaction of the carbon beam dump with the oxygen of the jet gas, too. Every 60 minutes, the 4 computer-controlled valves of the deposition and detection system switched one of the detector-arrays out of the gas flow. In this "service mode" the reactive surface can be renewed without interrupting the experiment. Thus a continuously measuring arrangement of 12 detectors was established. After 2 weeks of beam-time and an integral of 2.82x10¹⁸ beam particles, 5 correlated α -SF chains and one α - α -chain (Fig. 3,4) could be detected and attributed to the decay of Hs and / or Sg daughter. Due to pile-up from the high α -activity of Os, produced from the reaction ²⁶Mg + ¹⁵²Gd in the first part of the experiment, it was not possible to attribute 19 α - α -chains with appropriate energies and decay times to the decay of Hs; most of them were estimated to be random coincidences.

In analogy to OsO₄, HsO₄ presumably was deposited as Na₂[HsO₄(OH)₂], a hassate(VIII). A comparison of Hs to the Os-behavior (measured simultaneously) will be given.

References

[1] A. v. Zweidorf et al. GSI Scientific Report 2002, p. 175-177

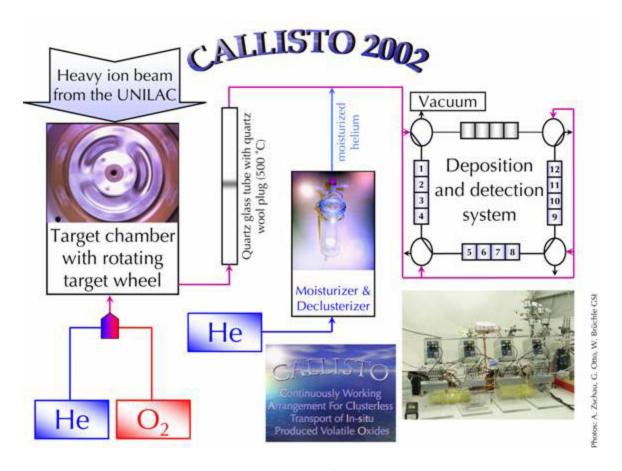


Figure 1. Diagram of CALLISTO.

Figure 2. Photograph of a detector array.

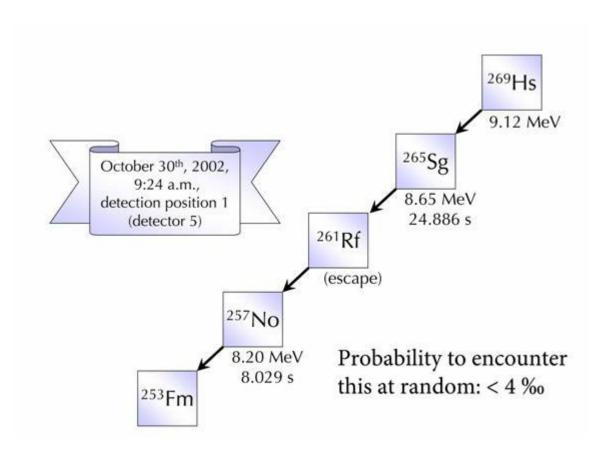


Figure 3. α - α -chain.

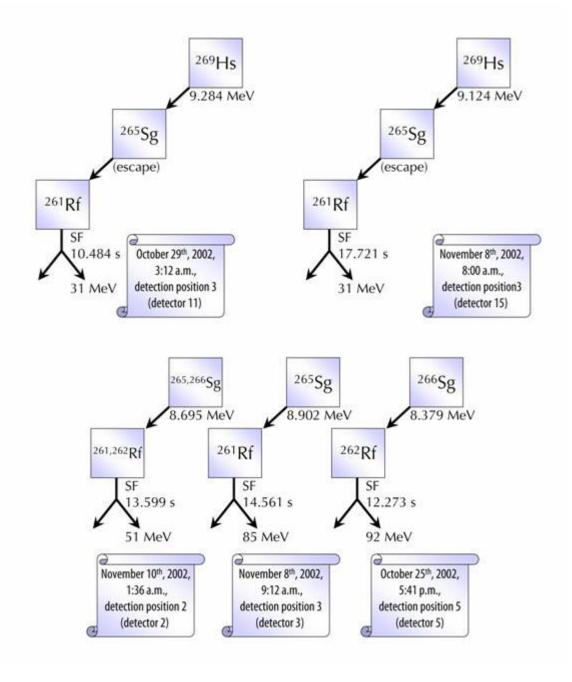


Figure 4. 5 α -SF –chains.